Trees on Geometrical Deformations to Model the Statistical Variability of Organs in Medical Images

نویسنده

  • Christof Seiler
چکیده

In medical image analysis, geometrical deformations are used to model intersubject variability. In orthopaedic applications, the geometrical variability is usually observable across anatomical scales. For instance, anatomical differences between mandible bones of different patients can be found on a coarse scale, between the entire left or right side, or on a fine scale, between teeth. Each level of granularity has specific regions of interest in clinical applications. The challenge is to connect the geometrical deformations to clinical regions across scales. In this thesis, we present this connection by introducing structured diffeomorphic registration. At the core of our method is the parametrization of geometrical deformations with trees of locally affine transformations describing intersubject variability across scales. In a second step, we statistically model the deformation parameters in a population by formulating a generative statistical model. This model allows us to incorporate deformation statistics as a prior in a Bayesian setting and it enables us to extend the classical sequential coarse to fine registration to a simultaneous optimization of all scales. This kind of group level prior is natural in a polyaffine context, if we assume one configuration of regions that describes an entire group of images with varying transformations for each region. We validate our approach on a wide range of orthopaedic applications: population-based implant design, biomechanical simulations and allograft selection for femur and mandibles. The improved intelligibility for clinicians and accuracy makes our method a good candidate for clinical use.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical models of sets of curves and surfaces based on currents

Computing, visualizing and interpreting statistics on shapes like curves or surfaces is a real challenge with many applications ranging from medical image analysis to computer graphics. Modeling such geometrical primitives with currents avoids to base the comparison between primitives either on a selection of geometrical measures (like length, area or curvature) or on the assumption of point-co...

متن کامل

A quantitative investigation on lung tumor site on its motion tracking in radiotherapy with external surrogates

Introduction: In external beam radiotherapy each effort is done to deliver 3D dose distribution onto the tumor volume uniformly, while minimizing the dose to healthy organs at the same time. Radiation treatment of tumors located at thorax region such as lung and liver has a challenging issue during target localization since these tumors move mainly due to respiration. There are...

متن کامل

Inferring brain variability from diffeomorphic deformations of currents: An integrative approach

In the context of computational anatomy, one aims at understanding and modelling the anatomy of the brain and its variations across a population. This geometrical variability is often measured from precisely defined anatomical landmarks such as sulcal lines or meshes of brain structures. This requires (1) to compare geometrical objects without introducing too many non realistic priors and (2) t...

متن کامل

A Simulation Study on Patient Setup Errors in External Beam Radiotherapy Using an Anthropomorphic 4D Phantom

Introduction Patient set-up optimization is required in radiotherapy to fill the accuracy gap between personalized treatment planning and uncertainties in the irradiation set-up. In this study, we aimed to develop a new method based on neural network to estimate patient geometrical setup using 4-dimensional (4D) XCAT anthropomorphic phantom. Materials and Methods To access 4D modeling of motion...

متن کامل

Diffeomorphic Atlas Estimation using Karcher Mean and Geodesic Shooting on Volumetric Images

In this paper, we propose a new algorithm to estimate diffeomorphic organ atlases out of 3D medical images. More precisely, we explore the feasibility of Kärcher means by using large deformations by diffeomorphisms (LDDMM). This framework preserves organs topology and has interesting properties to quantitatively describe their anatomical variability. We also use a new registration algorithm bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012